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Abstract—To cope with reverberation and noise in single
channel acoustic scenarios, typical supervised deep neural net-
work (DNN)-based techniques learn a mapping from reverberant
and noisy input features to a user-defined target. Commonly
used targets are the desired signal magnitude, a time-frequency
mask such as the Wiener gain, or the interference power spectral
density and signal-to-interference ratio that can be used to
compute a time-frequency mask. In this paper, we propose to
incorporate multi-task learning in such DNN-based enhancement
techniques by using speech presence probability (SPP) estimation
as a secondary task assisting the target estimation in the main
task. The advantage of multi-task learning lies in sharing domain-
specific information between the two tasks (i.e., target and
SPP estimation) and learning more generalizable and robust
representations. To simultaneously learn both tasks, we propose
to use the adaptive weighting method of losses derived from the
homoscedastic uncertainty of tasks. Simulation results show that
the dereverberation and noise reduction performance of a single-
task DNN trained to directly estimate the Wiener gain is higher
than the performance of single-task DNNs trained to estimate the
desired signal magnitude, the interference power spectral density,
or the signal-to-interference ratio. Incorporating the proposed
multi-task learning scheme to jointly estimate the Wiener gain
and the SPP increases the dereverberation and noise reduction
further.

Index Terms—multi-task learning, supervised deep neural
network, speech presence probability, dereverberation, noise
reduction

I. INTRODUCTION

In many speech communication applications, the recorded
microphone signal is inevitably corrupted with late reverbera-
tion and noise, which can be detrimental to speech quality and
intelligibility and to the accuracy of speech recognition sys-
tems [1], [2]. The goal of single channel speech enhancement
is to recover the desired signal while suppressing the interfer-
ence, i.e., late reverberation and noise. Single channel speech
enhancement has been traditionally approached using spectral
enhancement techniques [3], [4] or probabilistic modeling-
based techniques [5], [6]. In recent years however, successful
contributions based on data-driven approaches such as deep
neural networks (DNNs) have been proposed [7].

This work is supported by the National Key Research Project of China under
Grant No. 2017YFF0210903 and the National Natural Science Foundation of
China under Grant No. 61371147.

Typical supervised DNN-based techniques for single chan-
nel speech enhancement learn a mapping from reverberant and
noisy input features to a user-defined target [7]. Depending
on the definition of the target, such techniques can be broadly
categorized into magnitude estimation [8]–[10] and mask esti-
mation techniques [11]–[13]. Magnitude estimation techniques
aim at estimating the desired signal spectral magnitude. The
enhanced signal is then obtained by combining the estimated
magnitude with the phase of the recorded microphone signal.
Mask estimation techniques on the other hand aim at estimat-
ing a time-frequency mask such as the Wiener gain. The en-
hanced signal is then obtained by applying the estimated time-
frequency mask to the recorded microphone signal. Instead
of directly estimating the time-frequency mask, indirect mask
estimation techniques have been recently proposed in [14],
[15], where the interference power spectral density (PSD)
or the signal-to-interference ratio (SIR) are estimated. The
estimated interference PSD or SIR can then used to define
a time-frequency mask to recover the enhanced signal.

To improve the generalization performance of such DNN-
based enhancement techniques, in this paper we propose to
incorporate multi-task learning [16], which means using one
network to estimate multiple targets simultaneously. Multi-task
learning has been successfully applied in various areas such as
computer vision [17] or natural language processing [18], in
this paper it is incorporated for DNN-based single channel
speech enhancement. Multi-task learning improves learning
efficiency and generalization performance by using shared
representations to jointly learn multiple related tasks, such that
what is learned from one task can help learning and gener-
alization in another task. To incorporate multi-task learning
in supervised DNN-based single channel speech enhancement
techniques, we propose to use speech presence probabil-
ity (SPP) estimation as a secondary task. SPP is a useful
parameter in traditional single channel speech enhancement
techniques for accurately estimating the interference PSD, and
hence, for improving the speech enhancement performance [3],
[19], [20]. Consequently, we expect that the incorporation
of SPP estimation as a secondary task results in learning
more robust representations for the primary target (i.e., desired
signal magnitude, time-frequency mask, interference PSD, or
SIR) estimation task. To simultaneously learn both tasks, we



propose to use the adaptive weighting method of losses derived
from the homoscedastic uncertainty of tasks in [21].

II. DNN-BASED SINGLE CHANNEL ENHANCEMENT

We consider a reverberant and noisy microphone system
with a single speech source and a single microphone. In
the short-time Fourier transform (STFT) domain, the received
microphone signal Y (k, l) at frequency bin k and time frame
index l can be written as

Y (k, l) = X(k, l) +R(k, l) +N(k, l)︸ ︷︷ ︸
I(k,l)

, (1)

with X(k, l) being the direct and early reverberation compo-
nent, R(k, l) being the late reverberation component, N(k, l)
being the additive noise component, and I(k, l) denoting
the total interference component (i.e., late reverberation and
noise). Assuming that X(k, l) and I(k, l) are uncorrelated,
the PSD of the microphone signal Y (k, l) is given by

Φ2
y(k, l) = E{|Y (k, l)|2} = Φ2

x(k, l) + Φ2
i (k, l), (2)

with E denoting the expected value operator and Φ2
x(k, l) and

Φ2
i (k, l) denoting the PSDs of X(k, l) and I(k, l), respectively.
Since early reverberation is desirable [22], the objective of

speech enhancement is to recover an estimate of the direct
and early reverberation component X(k, l). Typical DNN-
based techniques aiming to recover X(k, l) are trained to
learn a mapping from reverberant and noisy input features
to a user-defined target. Depending on the target definition,
such techniques can be broadly categorized into magnitude
estimation [8]–[10] and mask estimation techniques [11]–[15].
Mask estimation techniques can be additionally categorized
into 3 subcategories, i.e., directly time-frequency mask estima-
tion [8]–[10], interference PSD estimation required to compute
a time-frequency mask [14], a priori SIR estimation required
to compute a time-frequency mask [15]. These techniques
differ not only in terms of the target definition, but also
in terms of the used input features and DNN architectures.
However, to provide a systematic review and compare the
performance for different targets in Section IV, in this paper
we consider only different target definitions for standard feed-
forward DNN architectures with temporal context depicted in
Figs. 1(a) and 1(b). Next, a brief overview of the considered
input and target definitions for such DNNs is provided.

A. Magnitude estimation

When estimating the desired signal magnitude, the DNN
target vector can be defined as the K–dimensional vector
constructed using the spectral magnitude of X(k, l) at time
frame l across all frequency bins K, i.e.,

x(l) = [|X(1, l)| |X(2, l)| . . . |X(K, l)|]T . (3)

To incorporate temporal context, the DNN input vector can be
defined as the K(2T + 1)–dimensional vector constructed by

concatenating the spectral magnitude of Y (k, l) from the past
and future T time frames across all frequency bins K, i.e.,

y(l) = [|Y (1, l − T )| . . . |Y (K, l − T )| . . . (4)
. . . |Y (1, l + T )| . . . |Y (K, l + T )|]T .

Using the estimated spectral magnitude |X̂(k, l)|, the enhanced
signal can be obtained as X̂mag(k, l) = |X̂(k,l)|

|Y (k,l)|Y (k, l).

B. Mask estimation

Although different time-frequency masks have been inves-
tigated in the literature [7], [12], the commonly used Wiener
gain is considered in this paper. With the a priori SIR ξ(k, l)

defined as ξ(k, l) =
Φ2
x(k,l)

Φ2
i (k,l)

, the Wiener gain can be computed
as

G(k, l) =
ξ(k, l)

ξ(k, l) + 1
. (5)

1) Direct mask estimation: When directly estimating the
Wiener gain, the DNN target vector can be defined as the K–
dimensional vector constructed using the gain G(k, l) at time
frame l across all frequency bins K, i.e.,

G(l) = [G(1, l) G(2, l) . . . G(K, l)]T , (6)

whereas the DNN input vector can be defined as the
K(2T+1)–dimensional vector y(l) in (4). Using the estimated
Wiener gain Ĝ(k, l), the enhanced signal can be obtained as
X̂gain(k, l) = Ĝ(k, l)Y (k, l).

2) Interference PSD estimation: Instead of directly esti-
mating the gain in (5), in [14] it has been proposed to use
a DNN for estimating the interference PSD Φ2

i (k, l). Hence,
the DNN target vector can be defined as the K–dimensional
vector constructed using the interference PSD Φ2

i (k, l) at time
frame l across all frequency bins K, i.e.,

Φ2
i (l) = [Φ2

i (1, l) Φ2
i (2, l) . . . Φ2

i (K, l)]T . (7)

Further, the DNN input vector can be defined as the K(2T +
1)–dimensional vector constructed by concatenating the mi-
crophone signal PSD Φ2

y(l) from the past and future T time
frames as in (4), i.e.,

Φ2
y(l) = [|Φ2

y(1, l − T )| . . . |Φ2
y(K, l − T )| . . . (8)

. . . |Φ2
y(1, l + T )| . . . |Φ2

y(K, l + T )|]T .

To compute the enhanced signal, first the estimated interfer-
ence PSD Φ̂2

i (k, l) is used to obtain an estimate of the a priori
SIR ξ̂psd(k, l) based on the decision directed approach [23].
The estimated a priori SIR ξ̂psd(k, l) is then exploited to
compute the Wiener gain Ĝpsd as in (5), yielding the enhanced
signal X̂psd(k, l) = ĜpsdY (k, l).

3) SIR estimation: Instead of directly estimating the Wiener
gain in (5), in [15] it has been proposed to use a DNN for
estimating the SIR ξ(k, l). Hence, the DNN target vector can
be constructed as

ξ(l) = [ξ(1, l) ξ(2, l) . . . ξ(K, l)]T , (9)

whereas the DNN input vector is the K(2T + 1)–dimensional
vector y(l) defined in (4). To compute the enhanced signal,



the estimated a priori SIR is used to compute the Wiener gain
Ĝsir as in (5), yielding X̂sir(k, l) = ĜsirY (k, l).

III. MULTI-TASK LEARNING FOR
DNN-BASED SPEECH ENHANCEMENT

In this section, we propose to increase the generalization
performance of the DNN-based speech enhancement tech-
niques reviewed in Section II by incorporating multi-task
learning, where multiple targets are learned simultaneously
in one network. Instead of using a single-task DNN that
only estimates the user-defined target (i.e., desired signal
magnitude, time-frequency mask, interference PSD, or SIR),
we propose to use a multi-task DNN that additionally estimates
the SPP. The SPP is a useful parameter in single channel
speech enhancement for accurately tracking the interference
PSD, and hence, for improving the speech enhancement per-
formance [3]. We hypothesize that jointly learning to estimate
the user-defined target and the SPP through shared DNN layers
within a multi-task learning framework yields more robust
and generalizable representations for the primary task (i.e.,
estimating the user-defined target). Assuming that the desired
signal and interference STFT coefficients are complex Gaus-
sian distributed, the SPP can be computed as [3]

SPP(k, l) =

(
1 +

P (H0)

P (H1)
(1 + ξH1

)e
− |Y(k,l)|2

Φ2
i
(k,l)

ξH1
1+ξH1

)−1

,

(10)
where P (H1) and P (H0) are the prior probabilities of speech
presence and absence and ξH1

denotes the typical a priori SIR
when speech is present. In line with the target definitions in
Section II, the target vector for SPP estimation is given by

SPP(l) = [SPP(1, l) SPP(2, l) . . . SPP(K, l)]T . (11)

Figs. 1(c)–1(e) depict examples of the considered DNN
architectures for jointly learning two different tasks, with the
first task being the estimation of a target vector as presented
in Section II and the second task being the estimation of the
SPP in (11). In Fig. 1(c) both tasks share one hidden layer
followed by a task-specific layer, in Fig. 1(d) both tasks share
two hidden layers followed by a task-specific layer, whereas
in Fig. 1(e) both tasks share one hidden layer followed by
two task-specific layers. To train these architectures, the loss
function can be defined as a weighted sum of the task-specific
loss functions [21], i.e.,

Lfixed(W) = λ1L1(W) + λ2L2(W), (12)

with L1 being the loss function for estimating a target vector
from Section II, L2 being the loss function for estimating the
SPP in (11), λ1 and λ2 being user-defined weighting scalars,
and W being the model parameters. When using the loss
function in (12), the performance of the model can be sensitive
to the values of λ1 and λ2 and finding optimal values can be
expensive [21]. To avoid tuning λ1 and λ2, we propose to
use the adaptive loss function derived in [21] to automatically
weight the task-specific loss functions, i.e.,

Lada(W, σ1, σ2) =
1

σ2
1

L1(W) +
1

σ2
2

L2(W) + log σ1σ2, (13)

where σ1 and σ2 are scalars jointly learned with the model
parameters W. Although not presented in this paper due to
space constraints, using (13) yields a better performance than
using (12) for several user-defined λ1 and λ2 for the reverber-
ant and noisy acoustic scenarios considered in Section IV.

IV. SIMULATION RESULTS

In this section, the performance of all single-task techniques
discussed in Section II is first compared on the same datasets
and DNN architectures.1 Further, the performance of the
proposed multi-task framework for joint direct mask and SPP
estimation is investigated.

A. Datasets

Two datasets are considered, i.e., a reverberant dataset
where the interference consists of different reverberation levels
and a reverberant and noisy dataset (referred to as a noisy
dataset) where the interference consists of a fixed reverberation
level and varying levels and types of noise. As clean speech
material, we have used the TIMIT database [24].

To generate the reverberant dataset, clean speech files are
convolved with measured room impulse responses (RIRs) with
reverberation times ranging from 200 ms to 1 s. For the
reverberant training, validation, and test sets we have used
500, 200, and 200 clean speech files and 16, 8, and 8 RIRs,
respectively, with no overlap between files for different sets.

To generate the noisy dataset, clean speech files are firstly
convolved with one measured RIR and corrupted with different
noise types from the DEMAND database [25]. For the training,
validation, and test sets we have used 250, 100, and 100 clean
speech files convolved with an RIR with reverberation time
580 ms, 570 ms, and 560 ms, respectively. As before, there
is no overlap between the clean speech files and the RIRs
for different sets. Further, for the training, validation, and test
sets, 5 different noise types at 3 different broadband signal-
to-noise ratio (SNR) are added to the reverberant signals,
with SNR ∈ {−5dB, 0dB, 5dB}. To analyze the generalization
capabilities of the proposed models, an unseen noisy test
set is also generated by adding 3 unseen noise types at
unseen broadband SNRs to the test reverberant signals, with
SNR∈{−3dB, 3dB, 10dB}.

B. Parameters, network architectures, and measures

Parameters. Signals are processed in the STFT domain
using a weighted overlap-add framework with a tight analysis
window of 256 samples and an overlap of 50%. Considering
only half of the spectrum, the number of frequency bins is
K = 129. Further, the number of time frames used for tem-
poral context is T = 3. To compute the PSDs required in (5)–
(10), we use recursive averaging with a smoothing factor of
0.85. To compute the SPP in (10) we use P (H1) = 0.5,
P (H0) = 0.5, and 10 log10 ξH1

= 15 dB.

1To the best of our knowledge, only the performance of magnitude and
direct mask estimation techniques has been compared on the same datasets
and DNN architectures in [12], while the performance of the more recently
proposed interference PSD and SIR estimation techniques has not been
considered.
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Fig. 1. Schematic illustration of the considered DNN architectures: (a) single-task estimation with two layers, (b) single-task estimation with three layers, (c)
multi-task estimation with one shared layer followed by one task-specific layer, (d) multi-task estimation with two shared layers followed by one task-specific
layer, and (e) multi-task estimation with one shared layer followed by two task-specific layers.

TABLE I
PERFORMANCE OF SINGLE-TASK ESTIMATION OF DIFFERENT TARGETS ON THE TEST REVERBERANT, NOISY, AND UNSEEN NOISY DATASETS.

Reverberant Noisy Unseen Noisy
Measure X̂mag X̂gain X̂psd X̂sir X̂mag X̂gain X̂psd X̂sir X̂mag X̂gain X̂psd X̂sir

∆PESQ 0.14 0.23 0.13 0.14 0.04 0.22 0.13 0.10 0.00 0.23 0.16 0.12
∆fwSSNR 1.80 2.27 1.07 1.31 1.77 2.68 1.64 1.19 1.06 2.38 1.71 0.98

Network architectures. As previously mentioned, the net-
work architectures considered for the single- and multi-task
techniques are depicted in Fig. 1. For all architectures, we use
rectifying linear unit (ReLU) as non-linearity on all hidden
layers. For estimating an unbounded target (i.e., the desired
signal magnitude, the interference PSD, or the SIR), there is
no non-linearity on the output layer. For estimating the Wiener
gain or the SPP which are bounded between 0 and 1, a sigmoid
non-linearity is used on the output layer. Mean square error is
used as the loss function for training the single-task architec-
tures in Figs. 1(a), (b) and as the loss function L1 for training
the multi-task architectures in Figs. 1(c)–1(e). Cross-entropy
loss is used as the loss function L2 for training the multi-task
architectures in Figs. 1(c)–1(e). All considered architectures
are trained for different number of hidden units nu ∈ {500,
1000, 1500} using the Adam optimizer with different hyper-
parameters, i.e., learning rate lr ∈ {0.001, 0.0001} and weight
decay wd ∈ {0, 0.001}. After training for 200 epochs, the
model parameters corresponding to the epoch with the lowest
validation error (out of all considered architectures, nu, lr, and
wd) are used as the final model parameters.

Measures. The dereverberation and denoising performance
is measured by the improvement in perceptual evaluation of
speech quality (∆PESQ) [26] and frequency-weighted seg-
mental signal to noise ratio (∆fwSSNR) [27] between the
processed and recorded microphone signals.

C. Single-task performance

The performance of the techniques in Section II is compared
on the test reverberant, noisy, and unseen noisy datasets.
As previously mentioned, for each technique, the two- and
three-layer networks in Figs. 1(a) and 1(b) are trained for all

considered hyper-parameters and the final network is selected
as the one yielding the minimum validation loss.

Table I presents the performance on all considered test
datasets, with the presented performance measures averaged
over all utterances in the respective datasets. It can be observed
that the considered techniques generally yield an improvement
in PESQ and fwSSNR on all datasets, with the direct mask es-
timation technique (i.e., X̂gain) yielding the best performance.
The advantageous performance of the direct mask estimation
technique in comparison to magnitude estimation was already
established in [12]. However, also the more recently proposed
interference PSD and SIR estimation techniques show a lower
dereverberation and noise reduction performance than the
direct mask estimation technique on all datasets.

D. Multi-task performance

The results presented in Section IV-C confirm the advanta-
geous performance of the direct mask estimation technique in
comparison to other state-of-the-art techniques. Hence, in the
following, this technique is jointly used with SPP estimation
within the proposed multi-task learning scheme. As previously
mentioned, the two- and three-layer networks depicted in
Figs. 1(c)– 1(e) are trained for all considered hyper-parameters
and the final network is selected as the one yielding the mini-
mum validation loss. The PESQ and fwSSNR improvement
obtained on all considered datasets are shown in Table II.
When comparing the presented ∆PESQ and ∆fwSSNR to
the values in Table I (for X̂gain(k, l)), it can be seen that the
proposed multi-task scheme improves the performance over
single-task training on all datasets. While a small difference
can be observed in ∆PESQ, a larger difference is observed in
the presented ∆fwSSNR values.



TABLE II
PERFORMANCE OF THE PROPOSED MULTI-TASK FRAMEWORK FOR

JOINTLY ESTIMATING THE WIENER GAIN (X̂GAIN ) AND THE SPP ON THE
REVERBERANT, NOISY, AND UNSEEN NOISY TEST DATASETS.

Reverberant Noisy Unseen Noisy

∆PESQ 0.24 0.24 0.25
∆fwSSNR 2.40 3.11 2.74

In summary, the presented results confirm that using a
multi-task learning framework with SPP estimation improves
the dereverberation and noise reduction performance of con-
ventional single-task DNN-based enhancement techniques. In
the future, we will investigate the potential of incorporating
parameters other than the SPP within the proposed multi-task
learning framework.

V. CONCLUSION

In this paper, multi-task learning has been proposed to im-
prove the performance of supervised DNN-based single chan-
nel speech enhancement techniques. Instead of only estimating
a user-defined target (e.g., the desired signal magnitude, a
time-frequency mask such as the Wiener gain, the interference
PSD, or the SIR), it has been proposed to also jointly esti-
mate the SPP through shared DNN layers. To simultaneously
learn both tasks, we have used a recently proposed adaptive
weighting method of losses derived from the homoscedastic
uncertainty of tasks. Simulation results on reverberant and
noisy datasets show that jointly estimating the Wiener gain and
the SPP within the proposed multi-task learning framework
outperforms other state-of-the-art techniques.
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