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ABSTRACT

Although the UA-Speech and TORGO databases of control and
dysarthric speech are invaluable resources made available to the re-
search community with the objective of developing robust automatic
speech recognition systems, they have also been used to validate a
considerable number of automatic dysarthric speech classification
approaches. Such approaches typically rely on the underlying as-
sumption that recordings from control and dysarthric speakers are
collected in the same noiseless environment using the same record-
ing setup. In this paper, we show that this assumption is violated
for the UA-Speech and TORGO databases. Using voice activity
detection to extract speech and non-speech segments, we show that
the majority of state-of-the-art dysarthria classification approaches
achieve the same or a considerably better performance when using
the non-speech segments of these databases than when using the
speech segments. These results demonstrate that such approaches
trained and validated on the UA-Speech and TORGO databases are
potentially learning characteristics of the recording environment
or setup rather than dysarthric speech characteristics. We hope
that these results raise awareness in the research community about
the importance of the quality of recordings when developing and
evaluating automatic dysarthria classification approaches.

Index Terms— automatic dysarthria classification, TORGO,
UA-Speech, noise, SNR

1. INTRODUCTION

Dysarthria is a motor speech disorder that occurs due to brain
trauma or neurological conditions such as Cerebral Palsy (CP),
Amyotrophic Lateral Sclerosis (ALS), or Parkinson’s disease, and
may affect the overall communicative ability of a patient [1]. To
diagnose and manage it, speech pathologists perform auditory-
perceptual assessments to evaluate different components of the
speech production mechanism. However, these assessments can be
time-consuming and subjective [2]. Aiming at assisting healthcare
professionals, there has been a growing interest in the research com-
munity to develop automatic dysarthria classification approaches.

State-of-the-art automatic dysarthria classification approaches
can be broadly grouped into two categories, i.e., i) approaches
which use handcrafted features with classical machine learning clas-
sifiers [3–9] and ii) deep learning approaches which are trained to
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automatically extract and classify discriminative speech represen-
tations [10–17]. Commonly used approaches in the first category
exploit support vector machines (SVMs) with Mel-frequency cep-
stral coefficients (MFCCs) [3], glottal-based features [4], openS-
MILE features [5], or sparsity-based features [8]. In addition to
SVMs, other classical machine learning methods such as Gaus-
sian Mixture Models [6] and subspace-based learning [9] have
been explored. Approaches in the second category have focused
on exploring various network architectures and training paradigms
such as long short-term memory networks [11], variational au-
toencoders [12], adversarial training [13], and convolutional neural
networks (CNNs) [10, 17]. More recently, self-supervised learning
(SSL) methods such as wav2vec2 [18] have been successfully ex-
ploited for a variety of speech classification tasks [19], motivating
their use for automatic dysarthria classification.

Despite the reported success of automatic dysarthria classifi-
cation approaches, state-of-the-art literature typically relies on the
underlying assumption that recordings from control and dysarthric
speakers are obtained in the same noiseless environment using the
same recording setup. If recordings for one group of speakers are
obtained in a consistently different environment than recordings for
the other group of speakers, classifiers trained on such recordings
would potentially learn characteristics of the recording environment
instead of dysarthric speech characteristics. Unfortunately, such an
assumption does not seem to be fulfilled for the commonly used UA-
Speech [20] and TORGO [21] databases. Although these databases
are made available to the community to develop automatic speech
recognition (ASR) systems (where different recording environments
and setups can even be desirable in order to develop robust ASR sys-
tems), they have also been used to validate a considerable number of
state-of-the-art automatic dysarthria classification approaches, such
as e.g. [3–5, 11–14, 16].

In this paper, we hypothesize that the reported dysarthria classi-
fication results using the UA-Speech and TORGO databases may be
reflecting characteristics of the recording environment rather than
characteristics of dysarthric speech. To investigate this hypothesis,
we first estimate the utterance-level signal-to-noise ratio (SNR) in
these databases, confirming the large variability in recording con-
ditions. Further, using voice activity detection (VAD), segments
that contain only speech and segments that do not contain any
speech are extracted from each utterance in these databases. State-
of-the-art dysarthria classification approaches are then trained and
validated using only the speech segments or using only the non-
speech segments. Remarkably, experimental results show that for
both databases, the majority of the considered state-of-the-art ap-
proaches achieve the same or even a considerably better dysarthria
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Fig. 1. Spectrograms of an exemplary utterance from a control and
dysarthric speaker from the a) UA-Speech and b) TORGO databases.

classification performance when using only non-speech segments
than when using only speech segments. These results confirm the
hypothesis that dysarthria classification approaches validated on
these databases may be learning characteristics of the recording
environment rather than dysarthria characteristics.

2. UA-SPEECH AND TORGO DATABASES

In the following, the UA-Speech and TORGO databases are briefly
described. Using forced alignment from ASR systems from [22] as
VAD, speech segments and non-speech segments are extracted from
each utterance in these databases.

UA-Speech [20]. The UA-Speech database contains recordings
of 15 patients with CP (4 females, 11 males) and 13 control speakers
(4 females, 9 males). Speech signals are sampled at 16 kHz. Since
a 7-channel microphone array is used for recording the speakers, we
consider the recordings of the 5th-channel (arbitrarily selected) for
the evaluations presented in this paper. The number of utterances
per speaker is 721 and the average length of all utterances consid-
ered for each speaker is 1887 s. Further, the average length of all
extracted speech and non-speech segments for each speaker is 564 s
and 1323 s respectively.

TORGO [21]. The TORGO database contains recordings from
7 patients (3 females, 4 males) with CP or ALS and from 7 con-
trol speakers (3 females, 4 males). Speech signals are sampled at
16 kHz. To avoid additional sources of variability besides dysarthria
characteristics, we use only utterances with matched phonetic con-
tent across all speakers. The number of such utterances per speaker
is 62 and the average length of all utterances considered for each
speaker is 201 s. Further, the average length of all extracted speech
and non-speech segments for each speaker is 76 s and 125 s respec-
tively.

Fig. 1 depicts spectrograms of exemplary utterances from a
control and dysarthric speaker from the UA-Speech and TORGO
databases. Visually inspecting the spectrograms in Fig. 1(a) reveals
that the exemplary dysarthric spectrogram from the UA-Speech
database is noisier than the control spectrogram, particularly at
lower frequencies. Further, visually inspecting the spectrograms
in Fig. 1(b) reveals that also the exemplary dysarthric spectrogram
from the TORGO database is noisier than the control spectrogram,
particularly at higher frequencies.

3. METHODS

In this section, the utterance-level SNR estimator is first briefly de-
scribed. Further, details on the considered state-of-the-art dysarthria
classification approaches are presented.

3.1. SNR estimation

Although robust SNR estimation remains an open problem, in this
paper we use the recently proposed data-driven recurrent neural net-
work from [23], since it was shown to outperform several state-of-
the-art SNR estimators. We use the same network architecture, train-
ing procedure, and training and validation datasets as in [23]. The
input to the network is the magnitude spectrogram of the noisy sig-
nals, whereas the target of the network is the frame-level SNR. Once
the frame-level SNR is estimated, an estimate of the utterance-level
SNR is obtained as in [23].

3.2. Dysarthria classification approaches

The considered state-of-the-art dysarthria classification approaches
are summarized in Table 1. In the following, the handcrafted features
or input representations and the classifiers used in these approaches
are introduced.

3.2.1. Handcrafted features and input representations

OpenSMILE. As in [5, 7], for each utterance, we extract 6373 fea-
tures with the openSMILE toolkit [24]. Similarly to [7], dimension-
ality reduction with Principal Component Analysis is performed by
selecting the number of features explaining 95% of the variance in
the data (from the training set).

MFCCs. We extract the mean, variance, skewness, and kur-
tosis of the first 12 MFCCs coefficients using the OpenSMILE
toolkit [24], constructing a 48-dimensional feature vector for each
utterance.

Sparsity-based features. As in [8], we compute sparsity-based
features through the shape parameter of a Chi distribution. To this
end, the short-time Fourier transform (STFT) of each utterance is
first computed using a Hamming window of length 16 ms and a
frame shift of 8 ms. For each frequency bin, a maximum likelihood
estimate of the shape parameter of the Chi distribution best model-
ing the spectral magnitude is obtained. At a sampling frequency of
16 kHz, this procedure yields a 129-dimensional feature vector for
each utterance.

Mel spectrograms. Similarly to [15], Mel-scale representations
are computed for 500 ms long segments extracted from utterances
using a time shift of 250 ms. For each segment, the STFT with
a Hamming window of length 32 ms and a frame shift of 4 ms is
computed. Final representations are obtained by transforming the
STFT coefficients to Mel-scale using 126 Mel bands.

Wav2vec2. Wav2vec2 is a state-of-the-art SSL method that
can produce powerful latent speech representations directly from
the raw speech signal. The release of the SUPERB benchmark [19]
has demonstrated that state-of-the-art results on several speech pro-
cessing tasks can be achieved by fine-tuning the wav2vec2 model
with a lightweight linear prediction classifier. Motivated by these re-
sults, in this paper we also exploit the wav2vec2 model for automatic
dysarthria classification.



Table 1. Summary of the investigated dysarthria classification approaches.
Approach Classifier Handcrafted feature or input representation

SVM+openSMILE [5]
Support vector machine with RBF kernel

ComParE-2016 - openSMILE features
SVM+MFCCs [3] Mel-frequency cepstral coefficients
SVM+sparsity-based features [8] Sparsity characterized by the shape parameter

CNN+Mel spectrograms [10] Convolutional neural network
Mel spectrograms

SRL+Mel spectrograms [15] Speech representation learning

MLP+ft-wav2vec2 [19]
Linear classifier

Fine-tuned wav2vec2 embeddings
MLP+wav2vec2 [19] Wav2vec2 embeddings without fine-tuning

3.2.2. Classifiers

Support vector machines. SVMs are traditional classifiers com-
monly used with handcrafted acoustic features for dysarthria classi-
fication [3–5, 8]. In the following, SVMs with a radial basis kernel
function (RBF) are used with different handcrafted acoustic features,
i.e., openSMILE, MFCCs, and sparsity-based features.

Convolutional neural networks. CNNs have been widely used
to extract discriminative input representations and achieve dysarthric
speech classification [10, 14, 17]. In the following, we use a CNN
operating on Mel-scale input spectrograms [10]. We adopt the archi-
tecture from [10] consisting of two convolutional layers (with 32 and
64 channels, kernel size: 10×10, and stride: 1). Each convolutional
layer is followed by batch normalization, max-pooling (kernel size:
2, stride: 3), and the ReLU activation function. A dropout layer with
a rate of 20% is placed after the final convolutional layer. A final
fully-connected layer with 128 input units and 2 output units is used
for dysarthria classification.

Speech representation learning (SRL). In this paper, SRL is
used to refer to the state-of-the-art dysarthria classification ap-
proach proposed in [15], where a CNN-based auto-encoder is used
to learn low dimensional discriminative bottleneck representations
from Mel-scale input spectrograms. Bottleneck representations are
learned by jointly minimizing the auto-encoder loss and the loss
of a linear dysarthria classifier. The learned representations are
then fine-tuned for the final dysarthria classification network. The
architecture description of the network can be found in [15].

Multilayer perceptron (MLP). Motivated by [19], we also
evaluate the performance of an MLP trained on wav2vec2 em-
beddings for dysarthria classification. The MLP consists of two
fully-connected layers. The first layer has 768 input units and 256
output units and the second layer has 256 input units and 2 out-
put units. Similarly to the speaker identification task in [19], each
utterance is processed by the wav2vec2 model and the obtained
embeddings are mean-pooled prior to being forwarded to the MLP
classifier. As outlined in Table 1 and as described in Section 4.1, we
consider two approaches using wav2vec2, i.e., MLP+ft-wav2vec2
referring to fine-tuning parts of the wav2vec2 model together with
the MLP for dysarthria classification and MLP+wav2vec2 referring
to freezing the wav2vec2 model and training only the MLP.

4. EXPERIMENTAL RESULTS

In this section, the utterance-level SNR of control and dysarthric
recordings from the UA-Speech and TORGO databases is analyzed.
Further, the performance of state-of-the-art dysarthria classification
approaches when using only speech segments and only non-speech
segments from these databases is analyzed. For completeness, the
performance of the considered classification approaches when us-

ing the complete utterances without any VAD (i.e., both speech and
non-speech segments) is also presented.

4.1. Training and validation

For all approaches investigated in this paper (cf. Table 1), a leave-
one-speaker-out validation strategy is used. In each fold, 90% of the
data from the training speakers is used for training, whereas 10% of
the data is used for validation. The prediction for a test speaker is
made through majority voting of the utterance-level/segment-level
predictions and the final performance is evaluated in terms of the
speaker-level classification accuracy. To reduce the impact that ran-
dom initialization has on the final performance, we have trained all
approaches using 3 different random initialization. The reported fi-
nal performance for all approaches is the mean and standard devia-
tion of the speaker-level classification accuracy obtained across these
different models. Except for the wav2vec2 embeddings, we apply z-
score standardization to all handcrafted acoustic features and input
representations. In the following, details on the training of each con-
sidered approach are presented.

SVMs. Separate SVMs are trained for each handcrafted acous-
tic feature in Table 1. The soft margin constant C and the ker-
nel width γ are optimized using a grid search procedure with C ∈
{10, 104} and γ ∈ {10−4, 10−1}. The optimal hyperparameters are
selected as the ones that achieve the highest utterance-level classifi-
cation accuracy on the validation set.

CNN+Mel spectrograms. The CNN is trained using the Adam
optimizer and the cross–entropy loss function. We use a batch size
of 128 and an initial learning rate of 2 × 10−5 for a total of 50
epochs. A scheduler is set to halve the learning rate if the loss on the
validation set does not decrease for 5 consecutive iterations.

SRL+Mel spectrograms. As in [15], the stochastic gradient
descent algorithm is used for training the SRL approach. The
dysarthria classifier is trained using cross-entropy, whereas the auto-
encoder is trained using mean square error. Further, we use a batch
size of 128 and an initial learning rate of 0.02 for a total of 20
epochs. A scheduler is set to halve the learning rate if the loss on the
validation set does not decrease for 5 consecutive iterations.

MLP+ft-wav2vec2. To fine-tune the wav2vec2 model, we
freeze the CNN encoder and fine-tune the transformer and the MLP
classifier. As in [19], the AdamW optimizer and the cross-entropy
loss function are used. Training is done with an effective batch size
of 128, i.e., a batch size of 16 and a gradient accumulation step of
8. A linear warm-up scheduler is used (warm-up ratio: 0.1) and the
initial learning rate is set to 3× 10−5.

MLP+wav2vec2. Using the wav2vec2 embeddings without
fine-tuning refers to freezing the complete wav2vec2 model and
training only the MLP classifier for dysarthria classification. The



Table 2. Mean and standard deviation of the estimated SNRs [dB]
across all utterances of control and dysarthric speakers in the UA-
Speech and TORGO databases.

Speakers UA-Speech TORGO

Control −3.7 ± 11.5 −2.1 ± 13.2
Dysarthric −7.6 ± 16.1 −4.0 ± 14.7

Table 3. Mean and standard deviation of the speaker classification
accuracy [%] across all folds and models in the UA-Speech database.
Approach Speech Non-speech Speech&Non-speech

SVM+openSMILE 81.0 ± 19.8 84.5 ± 21.9 83.3 ± 21.1
SVM+MFCCs 81.0 ± 1.70 100.0 ± 0.00 100.0 ± 0.00
SVM+sparsity-based features 94.0 ± 1.70 96.4 ± 0.00 96.4 ± 0.00
CNN+Mel spectrograms 95.2 ± 1.70 97.6 ± 1.70 98.8 ± 1.70
SRL+Mel spectrograms 98.8 ± 1.70 100.0 ± 0.00 100.0 ± 0.00
MLP+ft-wav2vec2 95.2 ± 1.70 97.6 ± 1.70 95.2 ± 1.70
MLP+wav2vec2 54.8 ± 1.70 58.3 ± 1.70 54.8 ± 1.70

used optimizer, loss function, batch size, and learning rate are the
same as for the MLP+ft-wav2vec2 approach.

4.2. Results

SNR estimation. Table 2 presents the mean and standard devia-
tion of the estimated utterance-level SNRs across all control and
dysarthric utterances for the UA-Speech and TORGO databases. As
demonstrated by the large standard deviation values of the estimated
SNRs, it can be said that there is a large variation in the acoustic con-
ditions of the recorded utterances for both databases. Most impor-
tantly, it can be observed that there is a large difference in the average
SNRs of control and dysarthric utterances in both databases, with the
difference being larger for the UA-Speech database1. With consis-
tently different recording conditions between control and dysarthric
utterances, there is no guarantee that automatic dysarthria classifi-
cation approaches validated on these databases are learning control
and dysarthric speech differences instead of differences in recording
conditions for the two groups of speakers.

Dysarthria classification. Table 3 presents the mean and stan-
dard deviation of the classification accuracy obtained on the speech
segments, the non-speech segments, and on the complete utter-
ances without using any VAD (i.e., speech&non-speech) for the
UA-Speech database using all considered approaches (cf. Table 1).
It can be observed that all approaches achieve the same or even
better dysarthria classification accuracy when using non-speech seg-
ments in comparison to when using speech segments or the complete
speech&non-speech segments. More specifically, it can be observed
that when using non-speech segments, all approaches except for
MLP+wav2vec2 yield a high classification accuracy ranging from
84.5% to 100.0%. The MLP+wav2vec2 approach performs consid-
erably worse than its fine-tuned version MLP+ft-wav2vec2 and all
other considered approaches. This result is to be expected since the
representations generated by the (frozen) wav2vec2 model should

1Although not presented here due to space constraints, the utterance-level
SNRs have been estimated using different SNR estimators. While the abso-
lute value of the estimated SNRs can be largely different depending on the
used SNR estimator, all estimators show large standard deviation values and
considerable differences between the average SNRs of control and dysarthric
utterances in both databases.

Table 4. Mean and standard deviation of the speaker classification
accuracy [%] across all folds and models in the TORGO database.
Approach Speech Non-speech Speech&Non-speech

SVM+openSMILE 60.0 ± 5.40 82.2 ± 6.30 71.1 ± 12.6
SVM+MFCCs 60.0 ± 0.00 88.9 ± 3.10 57.8 ± 3.10
SVM+sparsity-based features 73.3 ± 0.00 93.3 ± 0.00 73.3 ± 5.40
CNN+Mel spectrograms 53.3 ± 11.5 77.8 ± 10.2 68.9 ± 10.2
SRL+Mel spectrograms 71.1 ± 3.10 100.0 ± 0.00 91.1 ± 3.10
MLP+ft-wav2vec2 60.0 ± 5.40 57.8 ± 3.10 60.0 ± 5.40
MLP+wav2vec2 55.6 ± 3.10 57.8 ± 3.10 57.8 ± 6.30

be less susceptible to noise given that the model is trained on a large
database of noisy speech.

Table 4 presents the mean and standard deviation of the classi-
fication accuracy obtained on the speech, non-speech, and the com-
plete speech and non-speech segments from the TORGO database
using all considered approaches (cf. Table 1). Similarly to before, it
can be observed that all approaches achieve the same or even bet-
ter dysarthria classification accuracy when using non-speech seg-
ments in comparison to when using speech segments or the complete
speech&non-speech segments. Further, it can be observed that the
MLP+wav2vec2 approach is not as sensitive to the recording con-
ditions as the other approaches, as illustrated by the lower perfor-
mance on non-speech segments. However, differently from before,
the performance of the fine-tuned counterpart MLP+ft-wav2vec2 on
non-speech segments is also low. We suspect this occurs due to the
much smaller amount of speech material available for fine-tuning the
wav2vec2 model on the TORGO database (in contrast to the UA-
Speech database).

In summary, the results presented in this section show that the
majority of the considered state-of-the-art approaches achieve the
same or even better dysarthria classification performance when us-
ing non-speech segments than when using speech segments or com-
plete utterances from the UA-Speech and TORGO databases. These
results confirm our hypothesis that classification results obtained on
the UA-Speech and TORGO databases can be greatly affected by
characteristics of the recording environment and setup instead of
dysarthria characteristics.

5. CONCLUSIONS

In this paper, we have investigated the use of the UA-Speech and
TORGO databases to validate automatic dysarthria classification
approaches. We hypothesized that classification results obtained
using these databases could be biased towards capturing charac-
teristics of the recording environment rather than characteristics of
dysarthric speech. To investigate this hypothesis, we have estimated
the utterance-level SNRs on these databases. Further, we have
trained and validated state-of-the-art dysarthria classification ap-
proaches on the speech and non-speech segments of these databases.
Experimental results have shown that the utterance-level SNRs in
control and dysarthric recordings are indeed considerably different
in both databases. Additionally confirming our hypothesis, exper-
imental results have shown that several state-of-the-art approaches
achieve the same or a considerably better dysarthria classification
performance when using only the non-speech segments than when
using only the speech segments. We hope that these results raise
awareness in the research community about the care that should be
taken with respect to the quality of recordings when developing and
evaluating automatic dysarthria classification approaches.
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