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ABSTRACT

Multichannel equalization techniques for speech dereverberation are
known to be highly sensitive to errors arising during the identifica-
tion of the room impulse responses. In order to increase their robust-
ness, it has been proposed to incorporate regularization. However,
the optimal regularization parameter yielding the highest perceptual
sound quality has generally been determined intrusively, limiting the
practical applicability.

In this paper, we propose an automatic and non-intrusive se-
lection procedure for the regularization parameter based on the
L-curve and extensively investigate its performance. Experimen-
tal results show that using the automatic regularization procedure
for a recently proposed partial multichannel equalization technique
(P-MINT) leads to a very similar performance as using the intru-
sively determined optimal regularization parameter. Furthermore,
it is shown that the automatically regularized P-MINT technique
outperforms state-of-the-art multichannel equalization techniques
such as channel shortening and relaxed multichannel least-squares,
both in terms of reverberant tail suppression and perceptual sound
quality (PESQ).

Index Terms— acoustic multichannel equalization, speech
dereverberation, automatic regularization

1. INTRODUCTION

In many hands-free telecommunication applications the recorded
microphone signals are often corrupted by reverberation, which
typically degrades the quality of the speech signals, impairs speech
intelligibility, and decreases the performance of automatic speech
recognition systems. In order to mitigate these detrimental ef-
fects of reverberation several dereverberation approaches have
been investigated in the past decades [1]. One particular class of
speech dereverberation approaches is acoustic multichannel equal-
ization [2, 3, 4, 5], which is based on designing filters to reshape the
estimated room impulse responses (RIRs) between the source and
the microphone array.

The well-known multiple-input/output inverse theorem (MINT)
[2] can achieve in theory the highest dereverberation performance
and recover the anechoic speech signal, making acoustic multichan-
nel equalization a very attractive approach to speech dereverbera-
tion. However, since the estimated RIRs generally differ from the
real ones (e.g. due to the sensitivity of blind system identifica-
tion methods to interfering noise [6]), MINT fails to equalize the
true RIRs and typically yields large distortions in the processed out-
put signal [7]. Aiming at increasing robustness to estimation errors
by relaxing the constraints on the filter design, partial multichan-
nel equalization techniques such as channel shortening (CS) [3] and

relaxed multichannel least-squares (RMCLS) [4] have been investi-
gated. Since late reverberation (typically defined as the part of the
RIR after 50-80 ms) is the main cause of sound quality degrada-
tion [], such techniques aim at suppressing only the reverberant tail
without constraining the early reflections, which might however lead
to undesired perceptual effects.

In order to directly control the perceptual speech quality, a par-
tial multichannel equalization technique based on MINT (P-MINT)
has been recently proposed [5]. To further increase its robustness,
regularization has been incorporated. However, in order to select an
optimal regularization parameter that leads to a high perceptual qual-
ity, an intrusive procedure requiring knowledge of the true RIRs has
been employed, limiting the application of the regularized P-MINT
technique in practice.

In this paper, we propose an automatic and non-intrusive selec-
tion procedure for the regularization parameter based on the L-curve
criterion [8] and thoroughly investigate its performance. This non-
intrusive procedure is discussed for the regularized P-MINT tech-
nique since it has been shown in [5] that regularized P-MINT out-
performs state-of-the-art techniques such as RMCLS and CS. How-
ever, the procedure proposed here can be extended to any regularized
least-squares multichannel equalization technique (e.g. MINT).

2. ACOUSTIC MULTICHANNEL EQUALIZATION

Fig. 1 depicts an acoustic system with a single source and M mi-
crophones. The m-th microphone signal, m = 1, . . . , M , at
time index n is given by xm(n) = hm(n) ∗ s(n), where ∗ de-
notes the convolution operation, s(n) is the clean speech signal, and
hm(n) denotes the room impulse response between the source and
the m-th microphone, which can be described in vector notation as
hm = [hm(0) hm(1) . . . hm(Lh − 1)]T , with Lh the RIR length
and [·]T the transpose operation. Applying filters gm(n) of length
Lg , i.e. gm = [gm(0) gm(1) . . . gm(Lg − 1)]T , the output signal
ŝ(n) of the multichannel equalization system is given by the sum of
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Fig. 1. Multichannel equalization system



the filtered microphone signals, i.e.

ŝ(n) =

M∑
m=1

xm(n) ∗ gm(n) (1)

= s(n) ∗
M∑
m=1

hm(n) ∗ gm(n)︸ ︷︷ ︸
c(n)

= s(n) ∗ c(n), (2)

where c(n) is the equalized impulse response (EIR) between the
source and the output of the system, which can be described in vec-
tor notation as c = [c(0) c(1) . . . c(Lc − 1)]T , with Lc = Lh +
Lg − 1. Using the MLg–dimensional stacked filter vector g and the
Lc ×MLg–dimensional multichannel convolution matrix H, i.e.

g =
[
gT1 gT2 . . . gTM

]T
(3)

H = [H1 H2 . . . HM ] , (4)

with Hm the Lc × Lg–dimensional convolution matrix of hm, the
EIR can be expressed as

c = Hg (5)

The filters g can then be constructed based on different design ob-
jectives for c.

However, the estimated RIRs ĥm typically differ from the real
ones and hence, the estimated multichannel convolution matrix Ĥ
differs from H. Therefore in practice techniques such as the ones
described in the following design filters g to optimize the estimated
EIR ĉ = Ĥg.

MINT. The multiple-input/output inverse theorem [2] aims to ex-
actly invert the system up to a desired delay τ by designing inverse
filters g such that Ĥg = d, where d is the desired EIR defined as a
delayed impulse, i.e. d = [0 . . . 0︸ ︷︷ ︸

τ

1 0 . . . 0]T . Inverse filters are

then computed by minimizing the least-squares cost function

JMINT(g) = ‖Ĥg − d‖22 (6)

It has been shown in [2] that when the RIRs do not share any com-
mon zeros and when Lg ≥ dLh−1

M−1
e, filters that invert the multichan-

nel acoustic system can be computed as

gMINT = Ĥ+d (7)

with {·}+ denoting the Moore-Penrose pseudo-inverse. Since the
matrix Ĥ is a full row-rank matrix [9], its pseudo-inverse can be
computed as Ĥ+ = ĤT (ĤĤT )−1. However, such a technique
is very sensitive to RIR estimation errors, leading to an equalized
impulse response c = HĤ+d 6= d which typically causes large
distortions in the output signal. Experimental investigations in [4, 5]
have shown that techniques aiming only at partial equalization such
as partial multichannel equalization approach based on MINT1 are
significantly more robust.

P-MINT. The partial multichannel equalization approach based on
MINT [5] aims at setting the reverberant tail of the EIR to 0, while

1For an overview of other partial multichannel equalization techniques
such as CS and RMCLS the reader is referred to [3, 4, 5].

still controlling the remaining taps corresponding to the direct path
and early reflections. To accomplish this objective, the first part of
one of the estimated RIRs is used as the target response in (6), i.e.

JP−MINT(g) = ‖Ĥg − ĥd
p‖22 (8)

where
ĥd
p = [0 . . . 0︸ ︷︷ ︸

τ

ĥp(0) . . . ĥp(Ld − 1)︸ ︷︷ ︸
Ld

0 . . . 0]T , (9)

with p ∈ {1, . . . , M} and Ld denoting the length in number of
samples of the direct path and early reflections. Filters that partially
equalize the system can then be computed as

gP−MINT = Ĥ+ĥd
p (10)

In order to further increase the robustness of P-MINT to estimation
errors, regularization has been incorporated such that the energy of
the reshaping filters is decreased.
Regularized P-MINT. In the regularized P-MINT approach in [5],
the P-MINT cost function is extended to

J
R

P−MINT
(g) = ‖Ĥg − ĥd

p‖22 + δ‖g‖22 (11)

with δ a regularization parameter controlling the weight given to the
minimization of the energy of g. The regularized P-MINT filters
minimizing (11) can then be calculated as

gR
P−MINT

= (ĤT Ĥ + δI)−1ĤT ĥd
p (12)

where I is the MLg ×MLg–dimensional identity matrix.
Increasing the value of the regularization parameter δ decreases

the energy of g, making the reshaping filters less sensitive to errors
in the estimated RIRs. However, increasing this parameter also re-
duces the equalization performance with respect to the true RIRs,
resulting in a trade-off between performance for perfectly estimated
room impulse responses and robustness in the presence of estimation
errors.

3. NON-INTRUSIVE SELECTION OF THE
REGULARIZATION PARAMETER

Clearly different values of the regularization parameter δ in (12)
yield different reshaping filters g which lead to different perfor-
mance. The optimal regularization parameter δopt that yields the
highest perceptual sound quality differs depending on the acoustic
system to be equalized and the system estimation errors. In [5], δopt
has been intrusively determined by using the true room impulse re-
sponses (cf. Section 4), which are however unknown in practice.
Hence an automatic and non-intrusive procedure for the selection of
the regularization parameter is required.

The cost function in (11) shows that integrating regulariza-
tion introduces a trade-off between minimizing the residual energy
‖ĤgR

P−MINT
− ĥd

p‖22 and minimizing the filter energy ‖gR
P−MINT

‖22.
In order to automatically compute a regularization parameter δauto
that keeps both of these quantities small, it has been proposed in [8]
to use a parametric plot of the filter norm versus the residual norm
for several values of δ. This plot always has an L-shape with the
corner located exactly where the reshaping filter changes in nature
from being dominated by over-regularization to being dominated
by under-regularization. We propose selecting the regularization



parameter δauto in the regularized P-MINT technique as the one
corresponding to the corner of the parametric plot of ‖gR

P−MINT
‖2

versus ‖ĤgR
P−MINT

− ĥd
p‖2 (i.e. the point of maximum curvature).

As it is experimentally validated in Section 4, such a regularization
parameter also leads to a nearly optimal perceptual sound quality as
δopt.

The L-curve could be generated by initially computing the re-
shaping filters gR

P−MINT
using (12) for several regularization param-

eter values δ and then calculating the required norms. However, in
order to avoid any significant computational overhead, the L-curve
is generated using the singular value decomposition (SVD) of the
estimated convolution matrix Ĥ as following.

Consider the SVD of Ĥ, i.e.

Ĥ = ÛŜV̂T , (13)

where Û and V̂ are orthogonal matrices and Ŝ is a diagonal matrix
consisting of the singular values σ̂n of Ĥ in desending order, i.e.
Ŝ = diag{[σ̂0 σ̂1 . . . σ̂Lc−1]}. Using (12) and (13), the regular-
ized P-MINT filters can be expressed as

gR
P−MINT

=

Lc−1∑
n=0

σ̂nû
T
n ĥ

d
p

σ̂2
n + δ

v̂n, (14)

where ûn and v̂n denote the n-th column of Û and V̂ respectively.
Hence the inverse filter norm for a given δ can be computed as

‖gR
P−MINT

‖2 =

√√√√Lc−1∑
n=0

σ̂2
n(ûTn ĥd

p)2

(σ̂2
n + δ)2

(15)

Furthermore, expressing the norm of the residual as a function of the
regularization parameter and of the singular values leads to

‖ĤgR
P−MINT

− ĥd
p‖2 =

√√√√Lc−1∑
n=0

δ2(ûTn ĥd
p)2

(σ̂2
n + δ)2

(16)

Therefore once the SVD is computed, the L-curve can be readily
generated using (15) and (16).

Fig. 2 depicts a typical L-curve obtained using regularized P-
MINT for equalizing an erroneously estimated acoustic system. As
illustrated in this figure, increasing the value of δ decreases the norm
of the reshaping filter but at the same time increases the norm of
the residual. Although from such a curve it seems intuitively easy
to determine δauto that corresponds to the maximum curvature, a
numerically stable algorithm is needed to detect it automatically. In
this work, the triangle method [10] is used for locating δauto.

4. EXPERIMENTAL RESULTS

The performance of the regularized P-MINT technique using the
automatic and non-intrusive selection procedure for the regulariza-
tion parameter is evaluated using a measured acoustic system with
M = 2 and reverberation time T60 = 600 ms as the true system
to be equalized. The sampling frequency used is fs = 16 kHz
and the simulation parameters are set to Lh = 2000, Lg = 1999,
τ = 0, and Ld ∈ {0.01fs, 0.02fs, 0.03fs, 0.04fs, 0.05fs}. To
generate the estimated acoustic system, the real RIRs are perturbed
by adding scaled white noise as proposed in [11], i.e. ĥm(n) =

Fig. 2. Typical L-curve obtained using regularized P-MINT for an
erroneously estimated acoustic system

hm(n) + εm(n), where εm(n) is an uncorrelated Gaussian noise
sequence with zero mean and an appropriate variance, such that a
normalized channel mismatch Em defined as

Em = 10 log10

‖hm − ĥm‖22
‖hm‖22

, (17)

is generated. The considered normalized channel mismatch values
are

Em ∈ {−33 dB, −30 dB, −25 dB, −20 dB, −15 dB}. (18)

Furthermore, the target response in P-MINT is chosen as the direct
path and early reflections of the first estimated channel, i.e. ĥd

1 .
The reverberant tail suppression is evaluated using the energy

decay curve (EDC) of the obtained EIR c = Hg, which is defined
as

EDC(n) = 10 log10

1

‖c‖22

Lc−1∑
i=n

c2(i), n = 0, . . . , Lc − 1. (19)

To evaluate the perceptual sound quality we have used the objective
speech quality measure PESQ [12] with s(n) ∗ hd

1(n) as reference
signal. It has been shown in [13] that measures relying on auditory
models such as PESQ exhibit the highest correlation with subjective
listening tests when evaluating the quality of dereverberated speech.

In order to determine the regularization parameter to be used, we
have considered several regularization parameters, i.e.

δ ∈ {10−9, 10−8, . . . , 10−1}. (20)

To determine the optimal regularization parameter δopt, reshaping
filters g have been computed for each δ in (20) and the perceptual
quality obtained by the EIR they yield, i.e. c = Hg has been calcu-
lated. The optimal parameter δopt in each scenario is then intrusively
selected as the one leading to the highest perceptual sound quality,
i.e. PESQ score. Furthermore, the automatic parameter δauto is se-
lected as the one corresponding to the corner of the L-curve gener-
ated with the regularization parameters in (20). For the sake of clar-
ity and in order to avoid overcrowded plots this experimental part is
structured into two parts.



Fig. 3. EDC of the EIR obtained using regularized P-MINT with
δopt, regularized P-MINT with δauto, and EDC of h1 for the nor-
malized channel mismatch Em = −33 dB and the desired window
length Ld = 0.05fs (i.e. 50 ms)

Experiment 1. In the first experiment, the performance of the reg-
ularized P-MINT technique when using δauto is compared to the
performance when δopt is used. Fig. 3 depicts the obtained EDCs
for the normalized channel mismatch −33 dB and the desired win-
dow length 50 ms. As can be observed in this figure, the automatic
regularization parameter yields a very similar reverberant tail sup-
pression as the optimal regularization parameter, with the reverber-
ant tail being below audible levels. In order to evaluate the percep-
tual speech quality that the non-intrusive regularization procedure
yields, Fig. 4 (a) depicts the PESQ scores of the output ŝ(n) ob-
tained using regularized P-MINT with δopt and regularized P-MINT
with δauto for the normalized channel mismatch Em = −33 dB
and several desired window lengths. As illustrated in this figure, the
perceptual speech quality when using δauto is generally similar to
the one obtained when using δopt, except for the desired window
length of 40 ms where the PESQ score is reduced by approximately
0.5. However, the average PESQ score reduction over all desired
window lengths is only 0.2, implying that as Ld changes as a design
parameter, the automatic selection procedure for the regularization
parameter yields a nearly optimal performance.

Since the optimal regularization parameter typically changes as
the channel mismatch changes (larger estimation errors in the RIRs
require larger regularization), it is important to evaluate the percep-
tual quality when δauto is used for larger normalized channel mis-
matches. Fig. 4 (b) depicts the PESQ scores obtained using regu-
larized P-MINT with δopt and regularized P-MINT with δauto for
the desired window length 50 ms and several normalized channel
mismatches. It can be seen that using the automatically computed
regularization parameter yields a very similar perceptual quality as
δopt, with an insignificant average performance reduction over all
considered Em of 0.03.

Experiment 2. In this experimental part, the performance of the
regularized P-MINT technique when using δauto is compared to the
performance of state-of-the-art techniques such as CS and RMCLS.
Fig. 5 depicts the EDCs obtained for the normalized channel mis-
match −33 dB and the desired window length 50 ms. As illustrated

(a) (b)

Fig. 4. PESQ score of ŝ(n) obtained using regularized P-MINT with
δopt, regularized P-MINT with δauto, and PESQ score of the rever-
berant signal for (a) normalized channel mismatch Em = −33 dB
and several desired window lengths Ld and (b) several normal-
ized channel mismatches Em and desired window length Ld =
0.05fs (i.e. 50 ms)

in this figure MINT fails to invert the channel, leading to an EDC
that is even higher than the one of the original RIR. Furthermore,
also the channel shortening technique fails to reshape the channel,
yielding an audible reverberant tail. On the other hand, the RM-
CLS and the automatically regularized P-MINT techniques are sig-
nificantly more robust, with RMCLS yielding the highest reverber-
ant tail suppression. However, since the EDC does not fully de-
scribe the quality of the processed speech, it is important to evaluate
whether RMCLS also yields the highest PESQ score. Fig. 6 (a) de-
picts the obtained PESQ scores for several desired window lengths
and Em = −33 dB. As illutrated in this figure, the regularized
P-MINT approach using the automatic non-intrusive regularization
procedure outperforms MINT, CS, as well as RMCLS for the desired
window lengths 30 ms, 40 ms, and 50 ms, whereas similar perfor-
mance as RMCLS is achieved for 10 ms and 20 ms. Furthermore,
Fig. 6 (b) illustrates the obtained PESQ scores for Ld = 0.05fs (i.e.
50 ms) and several normalized channel mismatch values. It can be
seen that the automatically regularized P-MINT technique yields a
significantly higher perceptual speech quality than all other state-of-
the-art techniques for all considered normalized channel mismatch
values.

The results presented in these simulations show that the auto-
matic selection procedure for the regularization parameter yields a
nearly optimal perceptual sound quality in the regularized P-MINT
approach. Furthermore, it is shown that the automatically regular-
ized P-MINT technique always yields a similar or higher perfor-
mance than other state-of-the-art equalization techniques.

5. CONCLUSION

In this paper we have presented an automatic and non-intrusive pro-
cedure based on the L-curve for selecting the regularization param-
eter in regularized least-squares acoustic multichannel equalization



Fig. 5. EDC of the EIR obtained using MINT, CS, RMCLS, reg-
ularized P-MINT with δauto, and EDC of h1 for the normalized
channel mismatch Em = −33 dB and the desired window length
Ld = 0.05fs (i.e. 50 ms)

techniques. The performance of this procedure has been extensively
investigated and compared to the performance when the intrusively
selected optimal regularization parameter is used for the regularized
P-MINT technique. Simulation results show that using the automat-
ically determined regularization parameter yields very similar per-
formance as the optimally determined one. Furthermore, it has been
shown that the regularized P-MINT approach using the automati-
cally determined regularization parameter outperforms state-of-the-
art techniques such as RMCLS and CS both in terms of reverberant
tail suppression and perceptual speech quality.
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