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ABSTRACT

The objective of the speech distortion weighted multichannel Wiener
filter (MWF) is to reduce background noise while controlling speech
distortion. This can be achieved by means of a trade-off parameter,
hence, selecting an optimal trade-off parameter is of crucial impor-
tance.
Aiming at keeping both speech distortion and noise output power
low, in this paper we propose to compute the trade-off parameter
as the point of maximum curvature of the parametric plot of noise
output power versus speech distortion. To determine a narrowband
trade-off parameter, an analytical expression is derived for comput-
ing the point of maximum curvature, whereas to determine a broad-
band parameter an optimization routine is used. The speech distor-
tion and the noise output power can also be weighted in advance,
e.g. based on perceptually motivated criteria. Experimental results
show that using the proposed method instead of the traditional MWF
improves the intelligibility weighted SNR without significantly de-
grading the speech distortion.

Index Terms— noise reduction, speech distortion, MWF, trade-
off parameter, L-curve

1. INTRODUCTION

In many speech communication applications such as teleconferenc-
ing applications, hearing aids, and voice-controlled systems, the mi-
crophone signals are often corrupted by additive background noise,
which can significantly impair speech intelligibility. To tackle this
problem several multichannel noise reduction techniques have been
investigated, which exploit both spatial and spectro-temporal infor-
mation to reduce the background noise while limiting speech distor-
tion [1, 2, 3, 4, 5]. A commonly used noise reduction technique is
multichannel Wiener filtering (MWF) which minimizes the mean-
square error between the output signal and the speech component in
one of the microphones [6, 7]. The error signal typically consists
of a noise output power term and a speech distortion term. While
the traditional MWF assigns equal importance to both terms, the
speech distortion weighted MWF (MWFSDW) incorporates a trade-
off parameter which provides a trade-off between noise reduction
and speech distortion [1, 2]. Due to the arising trade-off, the choice
of this parameter in the MWFSDW is of crucial importance.
Typically a fixed trade-off parameter, empirically selected, has been
used which can be advantageous in preventing the filter coefficients
from changing excessively, hence avoiding spectral peaks that might
be perceived as musical noise. However, using a fixed parameter can
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be suboptimal since it does not reflect the typically changing speech
and noise powers in different time-frequency bins [8, 9, 10, 11].
Hence, in [8, 9, 10] it has been proposed to use a soft output voice
activity detector [12] to weight the speech distortion term by the
probability that speech is present and the noise output power term
by the probability that speech is absent. This principle has been fur-
ther extended in [11] where an empirical strategy for the selection
of a narrowband trade-off parameter has been proposed based on the
instantaneous masking threshold [13].
In this paper a systematic method for selecting a narrowband trade-
off parameter as well as a broadband one is established. Aiming at
keeping both speech distortion and noise output power low, it is pro-
posed to use the parameter that yields small and approximately equal
relative changes in both quantities. Mathematically this parameter is
defined as the point of maximum curvature of the parametric plot
of noise output power versus speech distortion. Furthermore, the
speech distortion and noise output power terms can be weighted in
advance, based on what is more important to the speech communi-
cation application under consideration or based on perceptually mo-
tivated criteria. An analytical expression in terms of the signal-to-
noise ratio (SNR) is derived for the narrowband trade-off parame-
ter, whereas optimization routines need to be used to compute the
broadband trade-off parameter. The narrowband trade-off parame-
ters in [8, 11] can then be derived within the proposed method by
selecting appropriate weighting functions.

2. CONFIGURATION AND NOTATION

Consider an M -channel acoustic system, where the m-th micro-
phone signal Ym(k, l) at frequency index k and time index l consists
of a speech component Xm(k, l) and a noise component Vm(k, l),
i.e., Ym(k, l) = Xm(k, l)+Vm(k, l). For the sake of readability the
time index l will be omitted in the remainder of this paper, except
where explicitly required. In vector notation, the M -dimensional
vector y(k) of the received microphone signals can be written as

y(k) = x(k) + v(k), (1)

with y(k) = [Y1(k) . . . YM (k)]T , and the speech and noise vec-
tors x(k) and v(k) similarly defined. Defining the vector of filter
coefficients w(k) similarly as y(k), the output signal Z(k) is given
by

Z(k) = wH(k)y(k) = wH(k)x(k) + wH(k)v(k). (2)

The traditional MWF aims at noise reduction by minimizing the
mean-square error between the output signal and the received speech
component in the m-th microphone, i.e., reference microphone. In
the MWFSDW a trade-off parameter µ(k) has been incorporated,



which allows to trade-off between noise reduction and speech dis-
tortion [1, 2]. Assuming that the speech and noise components are
uncorrelated, the MWFSDW cost function can be written as

min
w(k)

E{|wH(k)x(k)−eTmx(k)|2}︸ ︷︷ ︸
ψx(k)

+µ(k) E{|wH(k)v(k)|2︸ ︷︷ ︸
ψv(k)

}, (3)

with E the expected value operator, em the M -dimensional selector
vector, i.e., a vector of which the m-th element is equal to 1 and
all other elements are equal to 0, ψx(k) the speech distortion, and
ψv(k) the noise output power. The filter minimizing the cost func-
tion in (3) is given by

w(k) = [Rx(k) + µ(k)Rv(k)]−1 Rx(k)em, (4)

with Rx(k) and Rv(k) being the speech and noise correlation ma-
trices respectively, defined as

Rx(k) = E{x(k)xH(k)} = Ps(k)a(k)aH(k), (5)

Rv(k) = E{v(k)vH(k)}, (6)

where Ps(k) = E{|S(k)|2} is the power spectral density of the
speech source and a(k) = [A1(k) . . . AM (k)]T is the vector of
the acoustic transfer functions (ATFs). The MWF in (4) can be de-
composed into a Minimum Variance Distortionless Response Beam-
former (MVDR) wMVDR(k) and a single channel Wiener postfilter
G(k) applied to the MVDR output [14], i.e.,

w(k) = A∗m(k)
R−1

v (k)a(k)

aH(k)R−1
v (k)a(k)︸ ︷︷ ︸

wMVDR(k)

ρ(k)

µ(k) + ρ(k)︸ ︷︷ ︸
G(k)

, (7)

with Am(k) = eTma(k) and ρ(k) being the SNR at the output of the
MVDR beamformer, i.e.,

ρ(k) = Ps(k)aH(k)R−1
v (k)a(k). (8)

Setting µ(k) = 0 in (7), the MWFSDW yields the MVDR beam-
former, which reduces the noise while keeping the speech compo-
nent in the reference microphone undistorted, i.e., wH

MVDRa(k) =
Am(k). Using µ(k) 6= 0, the residual noise at the output of the
MVDR beamformer can be further suppressed at the cost of intro-
ducing speech distortion. Setting µ(k) = 1, the MWFSDW results in
the traditional MWF which assigns equal importance to the speech
distortion and noise output power terms. If µ(k) > 1, the noise out-
put power is reduced further in comparison to the traditional MWF
at the expense of increased speech distortion. On the contrary, if
µ(k) < 1 speech distortion is reduced further at the expense of
increased noise output power. Hence the selection of the trade-off
parameter in the MWFSDW is of crucial importance.

3. SELECTION OF THE TRADE-OFF PARAMETER

In the following, the L-curve method used for the automatic selection
of the regularization parameter in least squares problems [15, 16] is
adapted to select a trade-off parameter in the MWFSDW.

3.1. Narrowband trade-off parameter

Applying the filter w(k) from (7) and using the definition of Rx(k)
in (5), the speech distortion ψx(k) can be expressed as

ψx(k) = Ps(k)|Am(k)|2 µ2(k)

[µ(k) + ρ(k)]2
. (9)

Furthermore, the noise output power can be expressed as

ψv(k) = Ps(k)|Am(k)|2 ρ(k)

[µ(k) + ρ(k)]2
. (10)

Clearly it is desirable to use a trade-off parameter µ(k) that yields no
speech distortion and no noise output power, i.e., perfect noise reduc-
tion. However, given the inversely proportional relationship between
ψx(k) and ψv(k), this is not achievable. Fig. 1a depicts a typical
parametric plot of ψv(k) versus ψx(k) for 50 trade-off parameters
linearly spaced between 10−4 and 5, with the marked points show-
ing the exact value of µ(k) at the given positions. Due to the arising
trade-off between ψv(k) and ψx(k), this parametric plot has an L-
shape, with the corner (i.e., point of maximum curvature) located
where the filter w(k) changes in nature from being dominated by
large noise output power to being dominated by large speech distor-
tion. At the point of maximum curvature, i.e., µ(k) = 0.5 in the
depicted example, speech distortion and noise output power are si-
multaneously minimized. Hence we propose to select the trade-off
parameter µ(k) as the point of maximum curvature of the parametric
plot of ψv(k) versus ψx(k).
Using such a parameter inherently implies that maintaining a low
speech distortion and a high noise reduction performance is equally
valuable to the speech communication system. However, in certain
systems speech intelligibility is of central importance, hence one
could allow for a higher noise reduction performance at the cost
of increased speech distortion. In communication systems where
speech quality is of central importance, noise reduction could be
sacrificed to maintain a lower speech distortion. Furthermore, the
importance of maintaining a low speech distortion or a high noise
reduction performance also varies between different frequency bins,
e.g. based on auditory masking properties. To account for these dif-
ferences, we propose introducing a weighting function to the speech
distortion and noise output power terms, i.e.,

ψαx(k) = α(k)ψx(k) and ψβv(k) = β(k)ψv(k), (11)

with α(k) and β(k) being the speech distortion and noise output
power weighting functions, defined e.g. based on psychoacousti-
cally motivated measures such as average masking threshold [13]
or speech intelligibility weighting [17] (cf. Section 4). Introducing a
weighting function changes the point of maximum curvature. Fig. 1b
depicts the parametric plots of ψβv(k) versus ψαx(k) when the
speech distortion term is weighted more, i.e., α(k) = 2, β(k) = 1,
and when the noise output power is weighted more, i.e., α(k) = 1,
β(k) = 2. As it can be seen, putting more emphasis on the speech
distortion term yields a lower trade-off parameter, i.e., the point of
maximum curvature is µ(k) = 0.1. On the other hand putting more
emphasis on the noise output power yields a higher trade-off param-
eter, i.e., µ(k) = 2. The location of these points is also marked in
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Fig. 1: Typical parametric plots of (a) noise output versus speech
distortion and (b) (weighted) noise output power versus (weighted)
speech distortion



the original plot in Fig. 1a, showing how weighting the speech dis-
tortion or noise output power more changes the resulting trade-off in
comparison to when no weights are applied.
The curvature κ(k) of the parametric plot of ψβv(k) versus ψαx(k)
is defined as [18]

κ(k) =
ψ′αx(k)ψ′′βv(k)− ψ′′αx(k)ψ′βv(k)

{[ψ′αx(k)]2 + [ψ′βv(k)]2} 3
2

, (12)

where {·}
′

and {·}
′′

denote the first and second derivative with re-
spect to µ(k) respectively. The computation of the derivatives yields

ψ′αx(k) = 2α(k)Ps(k)|Am(k)|2 µ(k)ρ(k)

[µ(k) + ρ(k)]3
, (13)

ψ′′αx(k) = 2α(k)Ps(k)|Am(k)|2 ρ(k)[−2µ(k) + ρ(k)]

[µ(k) + ρ(k)]4
, (14)

ψ′βv(k) = −2β(k)Ps(k)|Am(k)|2 ρ(k)

[µ(k) + ρ(k)]3
, (15)

ψ′′βv(k) = 6β(k)Ps(k)|Am(k)|2 ρ(k)

[µ(k) + ρ(k)]4
. (16)

Substituting (13) to (16) in (12), the expression for the curvature can
be simplified to

κ(k) =
α(k)β(k)[µ(k) + ρ(k)]3

2Ps(k)|Am(k)|2ρ(k)[α2(k)µ2(k) + β2(k)]
3
2

. (17)

To compute the optimal trade-off parameter µ(k), the curvature
in (17) is maximized by setting its derivative to 0, i.e.,

κ′(k)=
3α(k)β(k)[µ(k)+ρ(k)]2[β2(k)−α2(k)µ(k)ρ(k)]

2Ps(k)|Am(k)|2ρ(k)[α2(k)µ2(k)+β2(k)]
5
2

=0

⇒ β2(k)− α2(k)µ(k)ρ(k) = 0. (18)

The solution to (18) yields

µo(k) =
β2(k)

α2(k)ρ(k)
. (19)

It should be noted that µo(k) only depends on the weighting func-
tions α(k), β(k), and on the SNR at the output of the MVDR beam-
former ρ(k). The SNR can be estimated using e.g. the decision-
directed approach in [19] or the cepstro-temporal smoothing-based
estimator in [20].
Fig. 2 depicts the postfilter gain G(k) for different choices of the
trade-off parameter as the SNR varies from −20 dB to 20 dB. For
SNRs lower than 0 dB, using the proposed trade-off parameter when
no weights are applied, i.e., α(k) = 1, β(k) = 1, yields a more ag-
gressive gain function than the traditional MWF, i.e., a higher noise
reduction performance as well as a higher speech distortion. For
SNRs greater than 0 dB the proposed method yields a less aggres-
sive gain function than the traditional MWF, i.e., a lower noise re-
duction performance as well as lower speech distortion. Weighting
the speech distortion term more, i.e., α(k) = 2, β(k) = 1, or the
noise output power term more, i.e., α(k) = 1, β(k) = 2, shifts the
gain function to the left or right respectively.

3.2. Broadband trade-off parameter

Using the narrowband parameter in (19) is advantageous in order to
account for the SNR differences in different frequency bins. How-
ever in case of large SNR differences the trade-off parameter might
vary significantly, resulting in large variations in G(k). Such large
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Fig. 2: Postfilter gain as a function of the SNR for µ(k) = 1 and for
the proposed parameter µo(k) with different choices of the weight-
ing functions

variations might lead to undesirable spectral outliers. Hence in the
following, we propose extending the method discussed above to
compute a broadband trade-off parameter µ.
The weighted broadband speech distortion Ψαx and the weighted
broadband noise output power Ψβv are defined as the summation of
their respective narrowband counterparts, i.e.,

Ψαx =

K−1∑
k=0

ψαx(k) and Ψβv =

K−1∑
k=0

ψβv(k), (20)

withK denoting the total number of frequency bins and ψαx(k) and
ψβv(k) expressed as a function of µ. The curvature of the paramet-
ric plot of Ψβv versus Ψαx is defined similarly as in (12), where
the derivatives can be computed as the summation of the respective
narrowband derivatives in (13) to (16). Since no analytical solution
can be found for the parameter µ that maximizes the curvature of
Ψβv versus Ψαx, an iterative optimization technique has been used.
The analytical expression for the gradient of the curvature has been
provided to the optimization routine in order to improve its numeri-
cal robustness and convergence speed. However, this expression has
been omitted here due to space constraints.

4. EXPERIMENTAL RESULTS

In this section the performance when using the traditional MWF,
i.e., µ = 1, is compared to the performance when using the proposed
method for the selection of the trade-off parameter in the MWFSDW.

4.1. Trade-off parameters

Within the proposed method, the following 3 alternative choices of
the narrowband trade-off parameter are evaluated:

i) no weights are applied to the speech distortion and noise out-
put power terms, i.e., µN = 1/ρ(k, l),

ii) the speech distortion term is weighted more, i.e., µN-SD =
1/[α2(k)ρ(k, l)],

iii) the noise output power term is weighted more, i.e., µN-NP =
β2(k)/ρ(k, l),

with α(k) and β(k) determined using the following simple approach
based on the speech intelligibility index [17]. In [17] each frequency
bin is assigned an intelligibility index to reflect how much a per-
formance improvement in that bin contributes to the overall speech
intelligibility improvement. In this work the intelligibility indexes
are scaled between 1 and 10, which are lower and upper bounds se-
lected such that the trade-off parameter stays within reasonable val-
ues. By setting α(k) and β(k) to the scaled intelligibility indexes,
speech distortion or noise output power are weighted more in fre-
quency bins with a high speech intelligibility index. Furthermore,
using the method described in Section 3.2 also the broadband trade-
off parameters for cases i) – iii) have been computed, referred to as
µB , µB-NP , and µB-SD .
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Fig. 3: Intelligibility weighted SNR improvement using the fixed parameter µ = 1 and the proposed method
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Fig. 4: Speech distortion using the fixed parameter µ = 1 and the proposed method

4.2. Setup and performance measures

We have considered a scenario with M = 2 microphones placed
5 cm apart and a single speech source located at 0◦. The speech
components were generated using measured room impulse responses
with reverberation time T60 ≈ 450 ms [21]. The noise components
consisted of nonstationary babble speech generated using the algo-
rithm in [22] under the assumption that the sound field is diffuse. The
performance for several intelligibility weighted input SNRs ranging
from −5 dB to 10 dB in steps of 2.5 dB has been investigated. The
MVDR filter coefficients have been computed using anechoic steer-
ing vectors assuming knowledge of the direction-of-arrival of the
speech source and a theoretically diffuse noise correlation matrix.
The signals were processed at a sampling frequency fs = 16 kHz
using a weighted overlap-add framework with a block size of 512
samples and an overlap of 50% between successive blocks. The
cepstro-temporal smoothing-based approach in [20] has been used
to estimate the SNR at the output of the MVDR beamformer. The
minimum gain of the postfilter has been set to −10 dB. In order to
avoid temporal outliers, a moving average smoothing over 5 time
blocks has been applied to the obtained trade-off parameters. The
minimum value allowed for the trade-off parameters has been set to
0.5. Since the performance of the MVDR beamformer is not rele-
vant within the scope of this paper, the performance for the different
trade-off parameters has been evaluated with respect to the beam-
former output using the intelligibility weighted SNR improvement
∆SNRI and the intelligibility weighted spectral distortion SDI com-
puted as in [6].

4.3. Results

Fig. 3a and 4a depict the ∆SNRI and the SDI values for the tra-
ditional postfilter with µ = 1 and for the different choices of the
narrowband parameter. It is shown that using µN results in a sys-
tematic improvement of 1 dB or higher in intelligibility weighted
SNR in comparison to using µ = 1. For high input SNRs, this
improvement causes no additional speech distortion as can be seen
in Fig. 4a. However, for low input SNRs using µN causes a higher
speech distortion than µ = 1 since the applied gain function is more
aggressive. Furthermore, putting more emphasis on the speech dis-

tortion term, i.e., using µN-SD , yields a lower ∆SNRI in comparison
to the traditional postfilter while decreasing the speech distortion.
On the other hand, putting more emphasis on the noise output power,
i.e., using µN-NP , results in a significantly higher improvement in in-
telligibility weighted SNR at the cost of increased speech distortion.
At low input SNRs however, ∆SNRI using µN-NP is not higher than
when using µN , which we belive occurs due to errors in the SNR
estimation at low input SNRs.
In order to evaluate the performance when using the proposed
method to select a broadband trade-off parameter, Fig. 3b and 4b
depict the ∆SNRI and the SDI for the traditional postfilter with
µ = 1 and for the different choices of the broadband parameter.
Similarly as for the narrowband comparisons, using µB yields a
higher ∆SNRI than the traditional postfilter at the cost of increased
speech distortion. When more emphasis is put on the speech dis-
tortion term, i.e., using µB-SD , the noise reduction performance
and the speech distortion are slightly decreased in comparison to
the traditional postfilter. On the other hand, when the noise output
power term is weighted more, i.e., using µB-NP , the noise reduction
performance is increased at the cost of increased speech distortion.
Finally, comparing the performance of the narrowband and broad-
band parameters, it can be said that using a narrowband trade-off
parameter is more advantageous since it typically yields a higher
noise reduction performance (cf. Fig. 3a and 3b) at a lower speech
distortion (cf. Fig. 4a and 4b). However, subjective listening tests
are necessary in order to establish whether these differences are
significant.

5. CONCLUSION

In this paper it has been proposed to select the trade-off parameter
in the MWFSDW as the one that maximizes the curvature of the para-
metric plot of noise output power versus speech distortion, such that
both these quantities are kept low. The speech distortion and the
noise output power terms can be weighted in advance, e.g. based
on perceptually motivated criteria. Experimental results have shown
that in comparison to the traditional MWF, using the proposed trade-
off parameter improves the intelligibility weighted SNR without sig-
nificantly affecting the speech distortion.
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