
A PERCEPTUALLY CONSTRAINED CHANNEL SHORTENING TECHNIQUE
FOR SPEECH DEREVERBERATION

Ina Kodrasi1, Stefan Goetze2, Simon Doclo1,2

1University of Oldenburg, Department of Medical Physics and Acoustics, Oldenburg, Germany
2Fraunhofer IDMT, Project Group Hearing, Speech and Audio Technology, Oldenburg, Germany

ina.kodrasi@uni-oldenburg.de

ABSTRACT

The objective of acoustic multichannel equalization is to design a
reshaping filter that reduces reverberation, improves the perceptual
speech quality, and is robust to errors in the estimated room impulse
responses (RIRs). Although the channel shortening (CS) technique
has been shown to be effective in achieving dereverberation, it may
fail to preserve the natural shape of an RIR leading to speech quality
degradation. Furthermore, CS yields multiple reshaping filters that
satisfy its optimization criterion but result in a different perceptual
speech quality.

In this paper, we propose a robust perceptually constrained chan-
nel shortening technique (PeCCS) that resolves the selection am-
biguity of CS and leads to joint dereverberation and speech qual-
ity preservation. Simulation results for erroneously estimated RIRs
show that PeCCS preserves the perceptual speech quality and re-
sults in a higher reverberant tail suppression than other state-of-the-
art techniques, such as CS and the regularized partial multichannel
equalization technique based on the multiple-input/output inverse
theorem (P-MINT).

Index Terms— acoustic multichannel equalization, channel
shortening, robustness, speech dereverberation

1. INTRODUCTION

Acoustic multichannel equalization techniques aim at achieving
speech dereverberation by reshaping the estimated room impulse
responses (RIRs) between the source and the microphone array.
Although in theory perfect dereverberation can be obtained when
multiple microphones are available [1, 2], such an approach poses
the practical challenge of achieving robustness to errors in the esti-
mated RIRs [3, 4, 5]. Since the estimated RIRs typically differ from
the true RIRs [6], acoustic multichannel equalization techniques
may fail to achieve dereverberation and may even lead to distortions
in the output speech signal [7]. In order to address this robustness is-
sue, techniques such as regularized partial multichannel equalization
based on the multiple-input/output inverse theorem (P-MINT) [5]
and channel shortening (CS) [4, 8] have been proposed.

The regularized P-MINT technique aims at simultaneously sup-
pressing the reverberant tail and controlling the perceptual speech
quality of the output signal. Experimental investigations in [5] have
shown that regularized P-MINT outperforms state-of-the-art tech-
niques such as CS in terms of perceptual speech quality. However,
the performance in terms of reverberant tail suppression is generally
lower than CS.
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The objective of CS is to design a reshaping filter which min-
imizes the reverberant energy while maximizing the energy of the
direct path and early reflections. Such an energy-based optimization
technique typically achieves a high level of reverberant tail suppres-
sion, but may fail to preserve the general shape of a natural RIR,
hence leading to a degraded speech quality [5]. Furthermore, CS
yields multiple reshaping filters which all satisfy its optimization
criterion. However, these reshaping filters result in a different per-
ceptual speech quality [4], raising the question of how to obtain a
perceptually advantageous solution in practice.

In this paper, a method for resolving the selection ambiguity of
a perceptually advantageous solution in CS is proposed. The re-
shaping filter is designed as a linear combination of the multiple CS
reshaping filters that leads to a reshaped overall response which is
similar to the first part of one of the estimated RIRs. As a result, a ro-
bust perceptually constrained channel shortening technique (PeCCS)
is established, which jointly achieves reverberant tail suppression as
well as perceptual speech quality preservation.

2. ACOUSTIC MULTICHANNEL EQUALIZATION

2.1. Configuration and notation

Consider the M -channel acoustic system depicted in Fig. 1. The
m-th microphone signal xm(n) at time index n is given by

xm(n) = s(n) ∗ hm(n), m = 1, . . . , M, (1)

where ∗ denotes convolution, s(n) is the clean speech signal, and
hm(n) denotes the RIR between the source and the m-th micro-
phone. The RIR can be described in vector notation as

hm = [hm(0) hm(1) . . . hm(Lh − 1)]T , (2)

with Lh being the RIR length and [·]T denoting the transpose oper-
ation. Applying reshaping filters gm of length Lg , i.e.

gm = [gm(0) gm(1) . . . gm(Lg − 1)]T , (3)
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Fig. 1. Multichannel equalization system



the output signal ŝ(n) is given by the sum of the filtered microphone
signals, i.e.

ŝ(n) =

M∑
m=1

xm(n) ∗ gm(n) = s(n) ∗
M∑
m=1

hm(n) ∗ gm(n)︸ ︷︷ ︸
c(n)

, (4)

where c(n) denotes the equalized impulse response (EIR) of length
Lc = Lh + Lg − 1, which can be described in vector notation
as c = [c(0) c(1) . . . c(Lc − 1)]T . Using the stacked MLg-
dimensional reshaping filter g, i.e.

g = [gT1 gT2 . . . gTM ]T , (5)

and theLc×MLg-dimensional multichannel convolution matrix H,
i.e.

H = [H1 H2 . . . HM ], (6)

with Hm being the Lc×Lg-dimensional convolution matrix of hm,
i.e.

Hm =



hm(0) 0 . . . 0

hm(1) hm(0)
. . .

...
... hm(1)

. . . 0

hm(Lh − 1)
...

. . . hm(0)

0 hm(Lh − 1)
. . . hm(1)

...
. . .

. . .
...

0 . . . 0 hm(Lh − 1)


, (7)

the EIR can be expressed as

c = Hg (8)

The convolution matrix H is assumed to be a full row-rank ma-
trix [9], and the length of the reshaping filters is assumed to be
Lg ≥ dLh−1

M−1
e [1]. The reshaping filter g can then be constructed

based on different design objectives for the EIR c.
However, since the true RIRs are generally not available in prac-

tice, acoustic multichannel equalization techniques design g using
the estimated multichannel convolution matrix Ĥ (constructed from
the estimated RIRs ĥm). Hence, the estimated EIR ĉ = Ĥg is typ-
ically optimized instead of the true EIR in (8). Several techniques
which aim at decreasing the sensitivity of the reshaping filter g to
RIR estimation errors have been proposed, of which the regularized
P-MINT and the CS techniques are briefly reviewed in the following.

2.2. Regularized partial multichannel equalization based on the
multiple-input/output inverse theorem (P-MINT)

The objective of the regularized P-MINT technique [5] is to sup-
press the reverberant tail of the EIR while also preserving the gen-
eral shape of a natural RIR. This is achieved by defining the desired
EIR to be ĥd

p , which denotes the first part (i.e. direct path and early
reflections) of one of the estimated RIRs, i.e.

ĥd
p = [0 . . . 0︸ ︷︷ ︸

τ

ĥp(0) . . . ĥp(Ld − 1)︸ ︷︷ ︸
Ld

0 . . . 0]T , (9)

with τ being a delay in number of samples, Ld denoting the length
of the direct path and early reflections in number of samples, and p ∈

{1, . . . , M}. In order to decrease the sensitivity of the reshaping
filter to errors in the estimated RIRs, a regularization term needs to
be incorporated, leading to the regularized P-MINT cost function

JR
P−MINT

= ‖Ĥg − ĥd
p‖22 + δ‖g‖22 (10)

with δ being a regularization parameter. The regularized P-MINT
reshaping filter minimizing (10) can be computed as

gR
P−MINT

= (ĤT Ĥ + δI)−1ĤT ĥd
p (11)

with I being the MLg×MLg-dimensional identity matrix. In [5] it
has been experimentally validated that such a technique is preferable
in terms of perceptual speech quality. However, its performance in
terms of reverberant tail suppression is typically lower than other
state-of-the-art multichannel equalization techniques.

2.3. Channel shortening (CS)

CS has been extensively investigated in the context of digital com-
munication applications [10] and has recently been applied to acous-
tic system equalization [4, 8]. The objective of CS is to maximize
the energy in the first Ld taps (i.e. direct path and early reflections)
of the EIR, while minimizing the energy in the remaining taps (i.e.
reverberant tail). This objective can be expressed in terms of a gen-
eralized Rayleigh quotient maximization problem, i.e.

JCS =
‖WdĤg‖22
‖WuĤg‖22

=
gT B̂g

gT Âg
(12)

where Wd and Wu are diagonal matrices representing the desired
and undesired windows respectively, i.e.

Wd = diag{[0 . . . 0︸ ︷︷ ︸
τ

1 . . . 1︸ ︷︷ ︸
Ld

0 . . . 0]}, (13)

Wu = diag{[1 . . . 1︸ ︷︷ ︸
τ

0 . . . 0︸ ︷︷ ︸
Ld

1 . . . 1]}, (14)

and

B̂ = ĤTWT
dWdĤ, (15)

Â = ĤTWT
uWuĤ. (16)

Maximizing (12) is equivalent to solving the generalized eigenvalue
problem B̂g = λÂg, where the optimal reshaping filter gCS is
the generalized eigenvector corresponding to the largest generalized
eigenvalue λmax, i.e.

B̂gCS = λmaxÂgCS (17)

In [4] it has been shown that there exist Ld linearly independent gen-
eralized eigenvectors satisfying (17), which however yield a differ-
ent perceptual speech quality. Furthermore, also a selection criterion
has been proposed in [4], namely the generalized eigenvector lead-
ing to the minimum l2-norm EIR. However, this criterion is based
on observations using informal listening tests for perfectly estimated
RIRs.

In the following, we propose a method for deriving a percep-
tually advantageous solution in the presence of RIR estimation er-
rors, which is a linear combination of all generalized eigenvectors
satisfying (17). The experimental results in Section 4 validate the
advantages of the proposed method.



3. PERCEPTUALLY CONSTRAINED
CHANNEL SHORTENING (PECCS)

Consider the MLg × Ld-dimensional matrix GCS whose columns
are the generalized eigenvectors gk

CS
, k = 1, . . . , Ld, satisfy-

ing (17), i.e.
GCS = [g1

CS
g2

CS
. . . gLd

CS
]. (18)

Then, any linear combination of these generalized eigenvectors, i.e.

g = GCSα, (19)

with α being an Ld-dimensional vector of scalar coefficients, also
maximizes the generalized Rayleigh quotient in (12). In order to
obtain a reshaping filter that also yields a high perceptual speech
quality, we propose to compute the vector α minimizing the cost
function

JPeCCS = ‖ĤGCSα− ĥd
p‖22 + ‖GCSα‖

2
2 (20)

The first term in (20) aims to obtain a reshaping filter that preserves
the first taps of one of the estimated RIRs whereas the second term
controls the reshaping filter energy in order to decrease its sensi-
tivity to errors in the estimated RIRs. Clearly, the weight given to
the minimization of the energy of the reshaping filter in (20) can be
controlled by incorporating a regularization parameter as done in the
regularized P-MINT technique (cf. (10)). However, the analysis of
such a regularized technique is beyond the scope of this paper.

By setting the derivative of (20) with respect to α equal to 0, the
vector αPeCCS minimizing JPeCCS can be computed as

αPeCCS = [(ĤGCS)T (ĤGCS) + GT
CS

GCS ]−1

× (ĤGCS)T (ĥd
p) (21)

leading to the PeCCS reshaping filter

gPeCCS = GCSαPeCCS (22)

The proposed PeCCS technique is hence a two-step multichannel
equalization technique, which exploits the CS multiple solutions that
already achieve reverberant tail suppression in order to obtain a ro-
bust and perceptually advantageous reshaping filter.

4. EXPERIMENTAL RESULTS

In this section, the proposed PeCCS technique is compared to the
CS [4] and regularized P-MINT [5] techniques.

4.1. Simulation parameters and performance measures

We have considered an acoustic scenario with a single speech source
and M = 2 microphones in a room with reverberation time T60 ≈
600 ms. The RIRs have been measured using the swept-sine tech-
nique with Lh = 4800 at a sampling frequency fs = 8 kHz. In
order to simulate estimation errors, the measured RIRs have been
perturbed by adding scaled white noise as proposed in [11], i.e.

ĥm(n) = hm(n)[1 + e(n)], (23)

with e(n) being an uncorrelated Gaussian noise sequence with zero
mean and an appropriate variance, such that a normalized channel
mismatch Em, defined as

Em = 10 log10

‖hm − ĥm‖22
‖hm‖22

, (24)

is generated. Although other normalized channel mismatch values
have been investigated, due to space constraints onlyEm = −33 dB
is considered in this paper. Furthermore, the simulation parameters
are set to Lg = 4799, τ = 0, p = 1, and several desired window
lengths have been considered, i.e.

Ls = Ld
1000

fs
∈ {20 ms, 30 ms, 40 ms, 50 ms}. (25)

The suppression of the reverberant tail is evaluated using the
energy decay curve (EDC) of the EIR defined as

EDC(n)=10 log10

1

‖c‖22

Lc−1∑
i=n

c2(i), n = 0, . . . , Lc − 1, (26)

where c = Hg and the reshaping filter g is designed using the esti-
mated convolution matrix Ĥ for all considered techniques.

A commonly used perceptually motivated objective criterion
which indicates how much of the non-direct path energy will be
perceived as coloration instead of reverberation is the clarity index
CLs [12], defined as

CLs = 10 log10

∑Ld−1
n=0 c2(n)∑Lc−1
n=Ld

c2(n)
. (27)

Furthermore, it has been shown in [13] that measures relying on
auditory models exhibit the highest correlation with subjective lis-
tening tests when evaluating the quality of dereverberated speech.
Hence, to evaluate the perceptual speech quality we have used the
objective speech quality measure PESQ [14], where the reference
signal employed in PESQ is s(n) ∗ hd

1(n), i.e. the clean speech sig-
nal convolved with the first part of the true first RIR for each value
of the desired window length Ls.

For the CS technique, the reshaping filter is selected as the
generalized eigenvector leading to the minimum l2-norm esti-
mated EIR ĉ as proposed in [4]. Furthermore, for the regular-
ized P-MINT technique the regularization parameter δ in (11)
is determined as in [5], i.e. a set of regularization parameters
δ ∈ {10−9, 10−8, . . . , 10−1} is considered, and the optimal
parameter is selected as the one leading to the highest PESQ score.
It should be noted that such a procedure is intrusive and inapplicable
in practice, since knowledge of the true RIRs is required to compute
the true EIR c and to compute the reference signal s(n) ∗ hd

1(n) for
PESQ.

4.2. Results

Fig. 2 depicts the EDC of the true RIR h1 and the EDCs of the EIRs
obtained using all considered techniques for the desired window
length Ls = 50 ms. As can be observed in this figure, the general-
ized CS eigenvector leading to the minimum l2-norm estimated EIR
yields an EDC that is only slightly lower than the EDC of h1. On
the other hand, the regularized P-MINT technique achieves a higher
level of reverberant tail suppression and the artificial tail introduced
after 0.5 s is not audible. However, the proposed PeCCS technique
yields the highest level of reverberant tail suppression throughout
the duration of the RIR, with its reverberant tail being significantly
below the reverberant tail of h1. Fig. 3 shows the clarity index of
h1 and the clarity index of the EIRs obtained using all considered
techniques for different Ls. The depicted CLs values validate the
previous conclusion based on the EDCs, i.e. the proposed PeCCS
technique yields the highest performance, followed by the regular-
ized P-MINT technique. The generalized eigenvector leading to the



Fig. 2. EDC of the true RIR h1 and EDC of the EIR obtained us-
ing PeCCS, regularized P-MINT, and the generalized CS eigenvec-
tor leading to the minimum l2-norm estimated EIR (Ls = 50 ms,
Em = −33 dB)

minimum l2-norm estimated EIR yields the lowest clarity index for
all considered desired window lengths Ls.

Finally, we have evaluated the perceptual speech quality using
PESQ for the different considered desired window lengths Ls. The
PESQ score of the first microphone signal x1(n) is also computed in
order to determine the effectiveness of applying the considered dere-
verberation techniques. The results are presented in Fig. 4, where it
can be seen that the generalized CS eigenvector leading to the min-
imum l2-norm estimated EIR yields the lowest perceptual speech
quality for all considered Ls. Furthermore, the proposed PeCCS
technique yields a higher performance than the regularized P-MINT

Fig. 3. Clarity index of the true RIR h1 and clarity index of the EIR
obtained using PeCCS, regularized P-MINT, and the generalized CS
eigenvector leading to the minimum l2-norm estimated EIR (Em =
−33 dB)

Fig. 4. PESQ score of the first microphone signal x1(n) and PESQ
score of the system’s output ŝ(n) obtained using PeCCS, regularized
P-MINT, and the generalized CS eigenvector leading to the mini-
mum l2-norm estimated EIR (Em = −33 dB)

technique for Ls = 20 ms, Ls = 30 ms, and Ls = 40 ms, whereas
a similar performance as the regularized P-MINT technique is ob-
tained for Ls = 50 ms.

In conclusion, the presented simulation results demonstrate that
applying the proposed PeCCS technique leads to a significantly
higher level of reverberant tail suppression as well as speech quality
preservation.

5. RELATED WORK

To the best of our knowledge, the presented PeCCS technique is the
first technique that considers the selection ambiguity of a perceptu-
ally advantageous solution in CS [4, 8] in the presence of RIR esti-
mation errors. In contrast to the selection criterion proposed in [4],
PeCCS takes into account RIR estimation errors and uses a novel op-
timization criterion which leads to a linear combination of the mul-
tiple CS solutions instead of a single generalized eigenvector. Fur-
thermore, unlike the regularized P-MINT technique proposed in [5],
PeCCS is a two-step multichannel equalization technique which ex-
ploits reshaping filters that already achieve reverberant tail suppres-
sion in order to derive a perceptually advantageous linear combina-
tion.

6. CONCLUSION

In this paper, we have presented a robust perceptually constrained
acoustic multichannel equalization technique for speech dereverber-
ation based on CS (PeCCS). Experimental results have shown that
PeCCS achieves a significantly higher level of reverberant tail sup-
pression than other state-of-the-art techniques such as CS and regu-
larized P-MINT, while preserving the perceptual speech quality.
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